Why do pilots sit on the left seat of the cockpit?

Why do pilots sit on the left seat of the cockpit?

Why do pilots sit on the left seat of the cockpit
The pilot on the left and first officer on the right
The pilot and first officer are only two flight crews in most of the modern aircraft. Pilot sits on the left side of the cockpit. And the first officer sits on the right side.

Reason for this goes back to the olden times. In olden times, Most of the aircraft were propeller driven. Propellers were attached in front of the aircraft.
Such aircraft have a tendency to yaw undesirably. This effect is known as slipstream effect. 

What is slipstream effect?

What is slipstream effect?
Slipstream effect
Most single engine Aircraft have clockwise rotating propeller. When propeller rotates, the air around it rotates. As Aircraft progresses, airflow becomes a spiral flow.

This air then hits the vertical stabilizer on the left side. Which makes aircraft to yaw left.

As Aircraft have a tendency to yaw left, it is easy for the pilot to turn Aircraft left. It takes more rudder force to yaw Aircraft right.

Airport Left traffic pattern

Aircraft left traffic pattern
Aircraft left traffic pattern
As it is easy to turn left, The left traffic pattern is standard traffic pattern. It means all the turns in the most of the airport traffic are left. But there are few airports with right traffic pattern.

The pilot keeps the aircraft on the right side of the airway. In olden times, pilots often used the direction of the rails and roads for the navigations. As opposite traffic follows the same rules, they pass each other from left. And hence avoiding any possible head-on collision.

This explains, why a pilot seat on the left side of single Engine propeller aircraft. But what about modern jets? Modern jets follow the same old rules. 

Why do modern plane pilots seat on the left seat of the cockpit?

Moden aircraft - Boeing 747 (Not so modern, but still!)
In most of the modern jets, there is no slipstream effect. But seating on left provides other benefits. According to International Civil Aviation Organization, in a case of a possible head-on collision, both pilots shall take their heading to the right. In this condition, left side seating pilot gets a better view of the other aircraft. This helps the pilot to control aircraft to avoid a collision.
And hence pilots seat on the left side of the cockpit. But it's not always true. Take an example of student pilots. Student pilots are not captain in command but they still seat on the left seat. and instructors seat on the right.

There is one more advantage of the pilot sitting on the left side of the cockpit. Pilot taxi aircraft in such a way that aircraft door is just in front of the airport terminal. In most of the airports, passengers board aircraft from the left side of the aircraft.  Hence, left sitting pilot gets a better view of the terminal building. This helps the pilot to take a better view of wingtip clearance from the terminal building. This ensures pilot that aircraft wings are not hitting airport terminal.

But why do passengers board a plane from the left? Check this article to know the answer.
Passengers board from the left of the aircraft
Do you know? most of the helicopter pilots seat on the right seat of the cockpit!

If you like this article follow us on Instagram to get updates about future articles and exciting aviation content: https://www.instagram.com/aircraftnerds/

Thanks for reading!

why do we board a plane from the left?

Why do we board a plane from left?

why do we board a plane from the left?
Why do we board a plane from left?
If you haven't noticed this while boarding on flights whenever you travel, this title may have shocked you. Yeah, That's true! You always board from the left side of the aircraft. Reason? Because aircraft doors are located on its left side. But why?

Different experts have different explanations for this. 

One such explanation was given by a commercial pilot Andrew Stagg. According to Capt. Andrew, the reason for boarding from the left side of the aircraft goes back to ships. Here is the fun fact! The left side of the ship is known as port while the right side of the ship is known as starboard.

ship boarding from port
Ship port
Actually, in olden times, Helmsman used to steer ships with the help of steering oar. And as most of the people were/are right-handed. Hence, Steering oars were positioned on the right side of the boat. Hence, the right side was called as steerboard. And derived from steerboard, the right side of the boat come to known as starboard. About Port, to avoid obstacles to the steering oar which was on right side of the boat, an embarking and disembarking of the passengers was done from the left side of the boat. And obviously, that was a side of the port. So, left side come to known as a port.

Olden airliners followed this same rule even for the aircraft. Following the tradition, passengers board modern planes from the left.

Passengers boarding from left
Passengers boarding from left
Another explanation was given by US Air Force pilot. According to him, early airports were designed in such a way that aircraft could taxi adjacent to the terminal, stop and board or deboard passengers. From the olden times, pilots seat on the left seat of the cockpit. Keeping boarding door on the left side of the aircraft was convenient for pilots to judge wingtip clearance from the terminal building. Again, this explains boarding from the left side of the aircraft.

aircraft boarding from left
aircraft boarding from left
While passengers board or deboard from the left door, the right side of the aircraft is used for services such as refueling, loading, and unloading, etc. This saves the time of both passengers and ground staff. 

These were the explanations given by the experts. But this produces one more question. Why most pilots sit on the left seat of the cockpit? Here's the explanation for that!

Thanks for reading!

What is aircraft thrust?

What is aircraft thrust? 

What is thrust

An average aircraft weighs approximately 450 tons (Here I’m referring to the takeoff weight) which is approximately the weight of 900 whale testicles.
Now how is a body that heavy going to be able to propel itself to achieve lift?
A little background check on the little devil that decide how fast this man-made birdie can move...

What is Thrust?

Thrust: The holy matrimony of the Pressure formula and Force equilibrium gave birth to this simplified formula for thrust.
Image result for turbojet thrust equation nasa
Here the mass flow exiting the engine is the sum of the mass flow rate of air and the mass flow rate of fuel(added at the burner). But since this mass flow rate of fuel is relatively small, we will ignore the term in our simplified equation.

T = Ma(Ve-Vi)
From this, the science humans found that thrust is directly proportional to :
 1.mass flow rate of air (mass of air flowing per unit time...we like bringing time into the picture when we work with a flow in motion aka fluid dynamics, in another article we’ll tell you why)
 2. the velocity difference between the entrance to the engine and the exit of the engine. (The thrust equation is derived considering the engine as the isolated system)

It doesn’t take a rocket scientist to know that if we increase one of the two or both of them were going to get what we want. WHAT DO WE WANT? THRUST! WHEN DO WE WANT IT? NOW!
How do we achieve in increasing one or more of these two quantities?
Suck. Squeeze. Bang. Blow.

Image result for heinkel he 178
Heinkel 178, Pleasure to meet you.

Imagine a Heinkel 178 cruising in the air on a late August morning over the greenest fields of 1939 Germany. The test pilot Erich warsitz sits in his cockpit not knowing that he would go down in history as the first man to fly an aircraft powered by a turbojet engine. The gas turbine engine was a man-made marvel and took on the world war by a storm, putting its piston predecessor to shame.
Sounds radical doesn’t it, but what really happens on the inside?
There’s nothing left to do but to march through the engine, one component at a time.
Image result for turbojet engine
Just your average jet engine.

Suck: The diffuser is a welcome mat to the engine. It’s job? To reduce the velocity of the incoming air. Why? Because slower air is easily tamed by the components following it. How does it do this? It’s a diverging section by geometry. The continuity equation would tell you that area and velocity are inversely proportional. So when the area increases in the section, velocity will decrease creating a slower flow.
This doesn’t really sound like a sucking mechanism does it? Well, the sucking happens because of a pressure difference. You see a flow is established when there is a difference in pressure. High pressure to low pressure: that’s all the navigation that fluid particles comprehend. (Why? In the microscale all atoms look to settle in a place of a lower energy, lower pressure means it has lower internal energy associated with it)So in order to suck in the air, the diffuser must be at a lower pressure level than the atmospheric pressure of free stream outside. How do you make this happen? By geometry. The more the wall of the diffuser diverges, the more the air that sticks to its boundary begins to feel like it’s not wanted anymore (nobody likes a clingy neighbour...get the hint bob)
So the wall is put at an angle such that, at a distance from the diffuser inlet, the flow separates from the boundary swirling inwards and making a low-pressure region there. This low pressure pulls the higher pressure free stream towards it and they make sweet sweet love. Thus generating a flow.

Squeeze: the second is the compressor. It’s job? To increase the pressure of the air (compress) how does it achieve this? It’s composed of a series of rotating and static blades called rotor and stator. The energy equation (Bernoulli equation) tells us that the sum of pressure head, kinetic head, and a gravitational head is a constant.
Or energy is conserved. The rotor creates velocity increase (by virtue of its rotation) and this translates to a pressure increase at the stator, satisfying the conservation of energy. Moral: to properly satisfy, one must properly squeeze.

Bang: Thirdly comes the combustor. The slow squeezed air comes into the combustor hoping to get hot. Combustor’s job? To create kinetic energy increase. When fuel and air are mixed and set on fire by a spark plug, this results in a massive increase in kinetic energy. (And temperature duh) how does this kinetic energy increase? Fuel and air mixing and being set on fire is a chemical reaction. So this chemical energy is going to be converted into kinetic energy. This hot faster-moving gas goes on to the next component: Turbine. The Siamese twin of the compressor with regards to mechanical parts does the exact opposite of what the compressor does, decreasing the pressure.
Hot fact: The turbine and the compressor are Siamese twins in another aspect. They’re joined at the hip. A shaft connects the turbine to the compressor driving it.
Wait, what?
This would mean that once a sustained flow is established in the engine, the turbine and the compressor work in synergy: driving each other. That’s exactly what happens. The kinetic energy produced in the combustor is what really produces the propulsive thrust. Without the combustor, it would just be a sustained operation of a compressor turbine system. And without the compressor turbine system, the engine would only be an uncontrolled explosion courtesy of the combustor. Hot damn.

Blow: the exhaust is a nozzle which implies that it is a converging geometry. It increases the velocity by the same principle employed at the diffuser. The faster air is expelled through the nozzle thus increasing the difference in velocity portion of the thrust formula. How do we increase the mass flow rate? In a turbofan configuration, there is a portion of air which is allowed to pass along the side of the engine, not through the various components: bypassing it. Kinda like a get out of jail free card, you don’t need to be sucked squeezed banged and blew, to be a reliable contributor to the system. Or so my mother tells me.
Now addressing the question that was posted. How does this help with a lift?

Image result for lift equation
Lift formula

The formula for lift shows that lift and the forward velocity are like two peas in a pod, one increased, the other does too.  When thrust increases, the forward velocity increases...which leads to the increase in lift. (It should be noted that you must increase the other parameters of area and angle of attack to attain enough lift to take off ). That's exactly why you see aircrafts taking a running start before they lift off from the runway.

And now you know how to get 900 whale testicles to take flight.

Thanks for reading!

How are Military aircrafts named?

Ambiguous Alphabets Explained

How are Military Aircraft named?

How are Military Aircrafts named?

The Northrop Grumman B-2 Spirit.
The Lockheed Martin F-22 Raptor
The North American P-51 Mustang.

What do these have in common? Besides being some SICK aircrafts in military aviation, they all have mysterious alphabets in their name which really don’t make sense. OR DO THEY?

Let’s try and decode what their names indicate.

So the letters stand for the primary function of the aircraft.

A10 Thunderbolt

A10 Thunderbolt

 The A in A10 thunderbolt stands for attack. These tactical metal birds can mess up a place with more precision than a bomber. How they do that is by being able to fly close to the enemy grounds, launch airstrikes and flee the scene like it’s nobody’s business. They ARE equipped to engage in air to air combat but it’s not what they were MADE for.

B2 spirit

B2 Spirit
B2 Spirit
The B in B2 spirit stands for bomber, designed to drop bombs on the ground bases. They’re on the heavier side (not weight shaming or anything) and thus not as manoeuvrable as an attack aircraft.

EF111 Raven

EF111 Raven
EF111 Raven
The E in EF111 Raven stands for electronic installation. These modern marvels have the exceptional ability to engage in electronic attack (using electromagnetic energy to jam enemy systems) and electronic protection(harnessing EM power to protect themselves from being pulled into an electronic attack) among other awesome things to do with EM energy.

F-22 Raptor

f22 Raptor
f22 Raptor

The F in F-22 Raptor stands for Fighter. Made for dogfights, let’s admit these belligerent devils look the coolest in the skies.

KC-135 Stratotanker

KC-135 Stratotanker

The K in KC-135 Stratotanker stands for Kerosene tanker. These are like war nurses in the skies. When a fighter who has just gotten out of a dogfight is running out of fuel in the air, Fuelrence tankingale comes bearing fuel. They can perform air to air refuelling. Where a rod pops out mid air and attaches itself to the aircraft in need of fuel.

P-52 mustang
P52 mustang
P52 mustang

The P in P-52 mustang stands for Patrol or Pursuit. They are fighters  They later came to be referred to as the F series.

SR-71 Blackbird

SR-71 Blackbird
SR-71 Blackbird

The R in SR-71 stands for Strategic Reconnaissance. Spies in the skies more like it. They collect information over enemy regions and return to ground base. In a recon mission they are often accompanied by fighters, as they are not equipped to defend themselves against enemy fighters.

T-67 firefly

T-67 firefly
T-67 firefly

The T in T-67 firefly stands for Trainer. The teachers. These aircrafts give pilots in training the experience they need to get up and flying.


The U in U-2 stands for utility. They are used for transporting people or freight



The Y in YF-23 stands for prototype. These prototype aircrafts may or may not make it to the country’s fleet.



The X in X-15 stands for Research. These aircrafts are still in the rudimentary research phase where they will be made to undergo rigorous testing before they get the chance to make it to the coveted hangars.

Check our previous articles on
How are Boeing planes named?
How are Airbus planes named?

Thanks for reading!

WE Expedition: Circumnavigation of the earth

Around the world in 90 days!

WE Expedition: Circumnavigation of the earth

Do you know about the Jules Verne's 1872 adventure novel 'Around the world in 80 days'? If yes, then you probably know how cool circumnavigation is. Oxford dictionary defines circumnavigation as The action or process of sailing or otherwise traveling all the way around something, especially the world. Travelling all around the earth isn't that exciting? (Unless you are the moon, then that's usual thing, Lame joke!) In the Jules Verne's novel, Englishman Phileas Fogg with his servant Passepartout uses various transportations to accomplish the circumnavigation. In 2004, Movie of the same name as the novel was made, directed by Frank Coraci.
This was complete fictional though! 
But there are few successful circumnavigations in the real world.

World's first Circumnavigation of the Earth

Magellan–Elcano circumnavigation

The Magellan–Elcano circumnavigation was the first circumnavigation. It was a Spanish expedition under the command of Ferdinand Magellan that sailed from Seville in 1519. They left Spain on 20th September 1519 with 5 Ships and 270 men. They traveled from Spain to East Asia through the Americas and across the Pacific Ocean. This trip was concluded by  Juan Sebastián Elcano after the death of Ferdinand Magellan at Philippine. At the end of the circumnavigation, Juan Sebastián Elcano returned Spain with only 1 ship and 18 men on 6th September 1522. 

As Aircraft Nerds, we are more interested in aerial circumnavigation, aren't we?

World's first Aerial circumnavigation of the Earth

First aerial circumnavigation
Douglas World Cruiser Aircraft Chicago
In 1924, The team of aviators of the United States Army Air Service (United States Air Force) conducted the first aerial circumnavigation of the world. In this trip, they covered 27,553 miles (44,342 km) in 175 days. 4 Douglas World Cruiser aircraft named Seattle, Chicago, Boston, and New Orleans left Santa Monica, California for circumnavigation on 4 April 1924. Douglas World Cruiser was modified version of DT Torpedo Bomber. 

Lucky Lady II
Lucky Lady II - Non-Stop circumnavigation
Not amazed yet? So, here is the exciting info. Lucky Lady II USAF Boeing B-50 Superfortress is the first aircraft to circumnavigate around the earth Non-Stop. In 1949, it was supported by in-flight refueling. The flight lasted for 94 hours and 1 minute. 

Enough talking about the past. Now, let's talk about Indian mother-daughter duo who is going to create history in the circumnavigation of the earth. They have named their this journey around the world as WE Expedition.

WE Expedition!

WE Expedition

What is 'WE'? 'WE' stands for Women Empower. WE is a movement which will inspire women & girls all over the world and help them to grow. WE expedition is the world’s first circumnavigation by an Indian woman pilot in a motorglider. 

Indian Capt. Audrey Deepika Maben with her daughter Amy Mehta is all set to go around the globe with microlight motor glider Mahi (which means Great Planet Earth in Sanskrit)! Actually, Mahi is Sinus 912, two-seat, ultra-light, high-wing, cantilever monoplane developed by Pipistrel with the wingspan of 14.97 m (49 ft 1 in) and max. take-off weight of 544 kg (1,200 lb). It is powered by Rotax 912UL, 4-cylinder liquid cooled engine. 

Sinus 912
Sinus 912
WE Expedition is a 90 days long journey. Mother-daughter duo will cover 40,000kms and visit 21 countries with 54 stops.

According to the official website of 'WEfly', World records set by this WE Expedition are as follow:
  • A World Record for the first motorglider circumnavigation by a woman
  • A World First for a mother-daughter team expedition
  • The First motorglider circumnavigation by an Indian pilot, man or woman
The special thing about this journey is it will not only create multiple World Records but also it will motivate woman across the globe. Fund collected by this journey (WE Udaan Scholarship) will help deserving girls across various cities and towns in India to enroll in aviation training.

More Details!

To get detailed information about WE Expedition you can visit their official website

This article is small attempt to support WE Expedition. We wish WE Expedition to be a great success. You can support WE Expedition by contributing to WE Udaan Scholarship. Click on the link below to contribute to WE Udaan Scholarship

Thanks for reading!

The Immelmann turn

The Immelmann turn

f22 raptor

There it was...The british BE 2 was swooping into world war 1 skies after having successfully evaded the German Fokker EI. Oh but the poor brit in the cockpit had little knowledge of the aerobatic tricks the german pilot had in store for him. You see the German, was Max Immelmann. And Max Immelmann was the Mann....wait for it....
Who gave birth to THE Immelmann turn.

Image result for Fokker EI
Never seen before photo of Immelmann thinking about how he's going to do some twisted turns

You're kidding right? You don't know?
What is the Immelmann turn? Ugh noob. It's alright I'll tell you.

Take a look at  Immelmann turn first,

The half loop, half roll beast of a manoeuvre was executed usually after an attack to reposition the aircraft for another attack . Fighter pilots just couldn't get enough of the chase. 
How do you execute an immelmann turn? Either you get yourself a fighter capable of withstanding such engine power OR you have a really vivid imagination.
Let's go with the latter. But in order for this imagination ride to begin you need some intro into a couple of concepts.
Kinetic energy: The energy associated with a body in motion. Anything which moves has kinetic energy.
Potential energy: The energy associated with a body displaced to a height from a reference position.

With the analogy of a rollercoaster, the ride has maximum potential energy and zero kinetic energy at the top as it relatively at a standstill and at a considerable height from the ground. This potential energy is traded for kinetic energy when the ride goes down the slope gaining momentum, and losing height.

Angle of attack: The angle between the chord line and free stream velocity.
Stall angle of attack: the angle of attack beyond which the aircraft begins to stall i.e. Lift is lost. WHAT? How does this happen? As the angle of attack increases we know that the lift increases (because angle of attack and lift coefficient CL are directly proportional) but too much of something is good for nothing. When you keep on increasing this angle there’s going to be a point (refer graph) where there will be separation of flow, and once flow separates there’s going to be no possibility of lift. (There are stall reversing manoeuvres’ though)

Related image
the first image shows attached flow over airfoil and lift (Coefficient of lift) linearly increases up until 16 deg (second image). This is when the flow starts separating and after this angle, flow becomes detached and lift becomes negative. NOT GOOD.
Rudder: The control surface on the vertical stabilizer which yaws the aircraft (learn about yaw here
 : LEAVE )
Related image
This swooshes the aircraft left or right
Ailerons: The control surfaces on the wing to roll the aircraft. (go learn : we know you want to.. )
Related image

 “Energy is neither created nor destroyed, it can only be changed from one form to another” – someone important.
This energy conservation principle drives many things, our little manoeuvre included. 
Let me paint your imagination with physics.

Image result for immelmann turn
The Immelmann turn
You first accelerate to gain kinetic energy (the energy associated with a body in motion), then he pulls the aircraft to a climb trading this kinetic energy for potential energy (the energy associated with a body which is at a height from a reference point). This climb happens when the angle of attack of the wings are constantly increased up until just before stall . MAD RIGHT? So then you apply full rudder to yaw the aircraft and the corresponding aileron to roll the aircraft to bring it back to level flight. This brings you back in position to get another shot at your enemy. 
And now you know.

Thanks for reading!